2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion) | 978-1-6654-1219-3/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICSE-Companion52605.2021.00033

2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

Guiding engineers with the Passive Process Engine
Environment

Christoph Mayr-Dorn, Stefan Bichler, Felix Keplinger, Alexander Egyed
Johannes Kepler University
Linz, Austria
firstname.lastname @jku.at

Abstract—Research as early as the 90s identified rigid, active
process enactment as detrimental to engineers’ flexibility. While
software engineering processes thus are rarely ‘executable”,
engineers would benefit from guidance in safety critical domains
where standards, regulations, and processes are often compli-
cated. In this paper, we present the Passive Process Engine Envi-
ronment (P2E2) that tracks process progress in the background
and automatically evaluates quality assurance constraints even in
the presence of process deviations. Our approach is engineering
artifact agnostic and comes with two exemplary tool connectors
to Jira and Jama. Video at: https://youtu.be/kXwU_baV WoQ

Index Terms—software engineering process, deviation, devel-
oper guidance, constraints, monitoring

I. INTRODUCTION

Software engineering processes together with software qual-
ity assurance (QA) aim at providing the necessary level of
software quality. Research as early as the 90s identified rigid,
active process enactment as detrimental to engineers’ flexi-
bility. We observed this need for flexibility during informal
studies at our industry partners, which revealed that engineers
deviate temporarily from the intended process. Indeed, the
current practice in industry is using semi-formal descriptions
to specify processes [1], rather than rigidly enforced processes.
As a result, software engineering processes are rarely “exe-
cutable”, meaning that engineers have little to no automated
support for checking whether their work is in line with the
process and whether their work is affected by deviations of
others. Given the often complicated standards, regulations,
and processes in safety critical domains, engineers quickly
feel overwhelmed and stressed about potentially deviating too
much or correcting too late — resulting in costly rework and/or
delays. Deviations come in different forms: forgetting to set a
trace between requirement document and design document as
mandated by QA, starting the implementation of non-reviewed
requirements, skipping a mandatory step, etc.

In this paper, we present our Passive Process Engine
Environment (P2E2) that allows to track the engineering
process’ progress in the background purely based on artifact
changes (where artifacts include requirements, models, code,
test cases, issues, work packages, etc.). Engineers need not
interact with the P2E2 except for obtaining feedback whether
they should start with their work, respectively whether their
work fulfills given quality constraints. The P2E2 combines
two key novelties: first, it treats (quality) constraints neither
as an implicit part of the engineering process model nor

as completely disjunct from it. Instead, (quality) constraint
evaluations are first class citizens: i.e., as explicit development
artifacts that may also determine process progress. Second, the
P2E2 continues to track progress even as engineers deviate
from the process.

We evaluated P2E2 with Dronology [2], an open source
system for unmanned aerial vehicles (UAVs) and an industrial
air traffic control system (ATC) to investigate to what extent
QA violations occurred [3].

II. USAGE SCENARIOS

The P2E2’s deviation tolerant process tracking capabili-
ties are useful for various, complementary purposes. In the
following, we describe three scenarios where P2E2 provides
guidance to engineers.

1 - Process Guidance: P2E2’s main purpose is to raise
process progress awareness amongst engineers by providing
them with information on step progress and quality constraint
fulfillment on demand. Engineers typically use a multitude
of tools and diverse artifacts for their work, spreading implicit
process information across these. Obtaining an accurate picture
of which artifacts are available at what maturity requires sig-
nificant coordination effort among engineers and/or querying
of different tools. On top of that, an engineer needs to be aware
of the precise process definition and applicable QA constraints.
Providing an integrated view on the process in a tool that the
engineer is free to use, but not forced to conduct work in, has
large potential to reduce coordination overhead and rework.

2 - Automating QA: Introducing a process guidance system
for a complete process at a fine granular level is a non-
trivial and work-intensive endeavour. The P2E2 enables an
incremental roll-out by focusing on the quickly achievable
benefits, such as automating tedious QA tasks, first. Rather
than modeling each step, QA engineers formulate which
quality constraints should be fulfilled at which stages in a
process. This progress-aware checking allows to ensure trace
links mandated by regulations and standards are checked as
early as possible rather than at the process end. For example,
consistency of trace links between low-level and high-level
requirements should be checked early, while trace links from
low-level requirements to test cases are not available until
much later in the process. Engineers thus receive timely feed-
back whether they are truly done with their work by consulting
the P2E2 Process Dashboard to ensure they haven’t missed

978-1-6654-1219-3/21/$31.00 ©2021 IEEE 49
DOI 10.1109/ICSE-Companion52605.2021.00033

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:40:00 UTC from IEEE Xplore. Restrictions apply.

anything (rather than being interrupted by QA engineers at a
later time when they have moved on to another task).

3 - Research foundation: the current P2E2 capabilities
don’t yet include sophisticated deviation analysis and repair
aspects [4]. Hence, engineers need to coordinate with their
coworkers and based on the process state to what extent a
deviation affects their work and how (respectively when) to
fix a deviation. The P2E2 , however, provides the technical
research foundation for building such capabilities. In addition,
the events emitted by the P2E2 provide all the vital details
required for process mining as artifact changes are readily
associated with process instances and process steps. Process
mining algorithms can then provide insights into typical task
duration, deviations, and their repairs, which in turn may be
applied to improve the engineering process and guidance.

III. RELATED WORK

Research in the 90s resulted in a number of approaches in
support of Process-centric software development environments
(PCSDE). Step-centric modeling and active execution frame-
works [5]-[8] determine which steps may be done at any given
moment, automatically executing them where possible. While
such research supports detailed guidance, deviations from the
prescribed process are not well supported. In contrast, systems
utilizing event-condition-action (ECA) rules or pre- and post-
conditions [9], [10] provide freedom of action to the engineer
but offer limited guidance.

More recent work focuses on specific aspects in the en-
gineering life-cycle rather than general purpose processes.
DevOpsML [11] aims at reducing the effort to describe
continuous integration and deployment processes. Amalfitano
et al. [12] aim to fully automate the execution of the testing
process and to automatically generate appropriate traceability
links. Similarly, Hebig et al. [13] investigate how various
software design and code artifacts dependencies emerge from
MDE activities. When involving human steps, approaches
often assume pre-defined process models and rigorous tool
integration. Kedji et al. provide a collaboration-centric de-
velopment process model and corresponding DSL [14]. At a
micro-level, Zhao et al. propose Little-JIL to help developers
track artifact dependencies during rework [15].

A few approaches on general purpose process modeling
and execution (e.g., [16]-[18]) focus on step-centric languages
such as SPEM and BPMN, which both imply active execution
where engineers cannot deviate from the prescribed process.

IV. PROCESS MODEL

The two main elements of the process model are Steps
and Decision Nodes attached to them (Figure 1 provides a
simplified UML class diagram of the process model’s main el-
ements). A Step describes what an engineer “should” do. For
example, refine a requirement, implement a feature, define a
test case. The challenge when passively executing processes is
determining the steps that are currently available for engineers
to work on, steps that represent work in progress (but perhaps
shouldn’t be worked on yet), and finally, steps that have

DecisionNode
-@-DecisionNodeState
-Constraint

-DataTransfer

InFlowType: AND, OR, XOR
-OutFlowType: SYNC, ASYNC

InFlow ‘ 1

-Constraint
Step 1
StepState 1

4 [StepTransitonConditionf)| OutFlow

Workflow

AV

S T 1 -Constraint

1 { 3 L]
InputArtifact | |OutputArtifact
Role Role

-Type -Type
Reference Reference

QualityCheckDocument
-QualityConstraint(]
areAliConstraintsFulfilled()

Jiralssue Jamaltem

0.* winterfacen
Artifact Fkey Hd

[description Lname
-status -links

Fig. 1: Process specification meta model: UML class diagram.
Jiralssue and Jamaltem are exemplary integrated artifact types.

been (successfully) completed. A passive process specification,
therefore, consists primarily of the corresponding transitions
conditions in the form of ECA rules. These define which
event(s) from the engineering environment (e.g., an artifact
update), given additional constraints (i.e., the condition) trigger
the inclusion of an artifact to a step’s output artifact set (i.e.,
the action part of the rule) as well as whether the step is now
ready to be worked on, in progress, aborted, or completed.
The artifacts used in the ECA rules are defined by the step.

A step has zero or more [nput artifacts attached that
represent required data to make a decision or artifacts that need
to be modified. It further has zero or more Output artifacts that
describe the effect of having executed the step (e.g., having
modified an input artifact or created a new artifact). Input and
output artifacts can represent any kind of information such as
requirements, tests, issues, or trace links.

A Decision Node describes how the completion of one or
more Steps — and additional conditions, again defined as ECA
rules — leads to the execution of subsequent steps. The set
of decision nodes thus defines the process’ control flow. A
decision node’s Datalransfer declaration describes how the
output of one step becomes the input of a subsequent step,
thereby defining the process’ data flow. The specific activation
conditions are placed on the /nFlows (from preceding steps to
a decision node), on the node itself, and on the OutFlows
(from decision node to subsequent steps).

V. TOOL ARCHITECTURE

The P2E2 consists of following main components (depicted
in Figure 2): Process Dashboard, Process Definition Registry,
Tool Connectors, Passive Process Engine, and a Rule Engine.

The process dashboard provides the primary interaction
means for stakeholders to register Passively Executable
Process Specifications (A), instantiate them (B), and inspect
the current status (i.e., inspecting process progress and QA
constraint evaluation results) (H).

A Passively Executable Process Specification consists of a
two parts: (i) a description of the high-level process structure
and data-flow and (ii) a set of rules that specify step progress
triggers, process control-flow conditions, artifact fetching, and
QA constraints.

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:40:00 UTC from IEEE Xplore. Restrictions apply.

IRA

fetch and subscribe 1 D

Tool Connectors

changes J

Passive Process Engine

Process
Dafinit

process and
artifact
changes

Process Instance

Registry
Process
Structure + Data | |
Flow (.json)
Control Flow
Rules +
QAconstraints }-{.-
Rules (.drl)

Fig. 2: P2E2 main architecture components.

QAcheck
results +
progress
triggers

O Drools Rrule Engine

[
[
B

P

Process Dashboard

load initiate process and QA status

A Process Instance is created by selecting a process spec-
ification and providing the ids of the required input artifacts
(C). The Passive process engine then fetches the artifacts via
the Tool Connectors. At the same time it registers for any
artifact updates (D). Similarly, the rule engine fetches artifacts
(E) when traversing trace links or relations among artifacts.

Tool Connectors obtain artifacts from their origin services,
e.g., a Jira issue from a Jira server, a requirement from
IBM Doors, or commit information from a Git repository,
typically via the servicess REST API. A Tool Connector
takes on sophisticated tasks beyond obtaining artifact updates
(via polling or subscriptions). It manages which artifacts are
relevant for a process and thus need to be monitored, and keeps
a cache of these artifacts up to date.

When the Passive Process Engine receives an artifact update
event (F), it looks up which rules in the Rule Engine compo-
nent rely on that artifact and triggers them (G). Depending
on condition evaluation outcome, the Rule Engine signals
process progress events back to the Passive Process Engine.
The Passive Process Engine subsequently uses these events to
update the process state and determine which steps to activate,
which ones to deactivate, and which artifact (references) to
copy from the output of one step to the input of a subsequent
step. These changes in turn are fed back into the rule engine
(E) potentially triggering further progress.

A. Implementation Details and Usage

The P2E2 prototype is implemented in Java on top of the
Axon framework and is available on Github ! with a demon-
stration video available on youtube.> The Axon framework
implements the event-sourcing pattern, thus any change in the
process and any artifact change is captured as an event. These
events establish an audit trail how the process came about and
allow replaying the process event by event for inspection at
which time a quality constraint was not (yet) fulfilled.

Process structure and data flow are specified in a json format
(directly loaded into the passive process engine) while control

Uhttps://github.com/jku-isse/cds.p2ep.icse2021demo
Zhttps://youtu.be/kXwU_baV WoQ

flow conditions and QA constraint are written as Drools rules
(.drl files) — see dashed arrows in Figure 2. The Drools rule
engine [19], a Business Rules Management System, can be
easily integrated into a Java application and allows easy access
to Java objects (representations of e.g., Jira artifacts) within
rules written in a Java dialect. Currently, the control flow
and QAconstraint rules come with some boilerplate overhead.
Writing new rules requires copying and slightly adjusting the
boilerplate code. A blockly-based web editor (briefly shown in
the video) is work in progress from which currently the json
process structure, data flow mapping, and later rule boilerplate
code is automatically generated.

We provide tool connectors for Jama and Jira (via their
REST interface) as an example how to access artifacts, cache
them in a CouchDB (json based NoSQL database), and peri-
odically poll for updates. The passive process engine and the
rule engine provide the process id to the tool connectors when
fetching an artifact. Hence the connectors send artifact updates
only to the relevant process instances. Other event sources such
as the developer’s IDE are currently not supported.

The Process Dashboard makes use of the Vaadin framework
for automated pushing of updates to the user’s web browser.
Figure 3 (middle) shows details of an example simple pro-
cess and its tasks, providing details on which QA constraint
where last evaluated (right), their evaluation result (com-
pletely/partially/not fulfilled or not evaluated yet), provides
the ability to inspect input and output artifacts, and the option
to request an explicit re-evaluation of QA constraints. The
dashboard also allows uploading of new process definitions
(left), and initiating new process instances.

VI. PROTOTYPE EVALUATION

We used our TimeTracer tool [20] to revert artifacts and
their trace links to their initial state, i.e., the start of the pro-
cess. TimeTracer then provides artifact changes, step-by-step,
thus simulating (i.e., “replay”) changes made by engineers
(e.g., modify the state of artifacts in Jira, add trace links, etc.)
allowing us to automatically trigger constraint checks and track
the process state the same way as in a “live” environment.

Execution of 802 open source processes instances (issues in
Dronology involving eight QA constraints) and 109 industrial
processes instances (also involving eight QA constraints) with
P2E2 allowed us to inspect whether QA constraints are
fulfilled immediately upon a task’s completion or rather at
the end of the process. The results for Dronology showed that
only 39% of process instances followed the defined process,
compared to 80% in the industrial setting. These numbers hint
at the potential of P2E2 to make following the process easier
for engineers.

VII. CONCLUSIONS

P2E2 guides engineers through the development process
by highlighting which steps are completed, which ones are
available to be worked on, and whether quality assurance
constraints have been fulfilled. Engineers need not leave their
engineering tools and are not limited by P2E2 in their freedom

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:40:00 UTC from IEEE Xplore. Restrictions apply.

%% Process Dashboard

Current State Snapshot State Compar

Controls

> Create Workflow Workflow Instance

> Mock Workflow
v PARALLELWITHDATA_WORKFLOW_TYPE (WF...9e38f)

v Updates
Prepare Implementation

Fetch Updates Now

Does the Jira ticket have at least one FixVersion?

> Backend Queries Documenting
Reporting

PSS T VR AGA

Is the Jira ticket related to exactly one Design Definition?

Last Evaluated Last Changed

(i} o & A
® ()

11/19/20, 9:41 AM 11/19/20, 9:41 AM L) (]

11/19/20, 9:41 AM 11/19/20, 9:41 AM = (]
® (2]
® (2]
m A

Fig. 3: P2E2 - Process Dashboard screenshot excerpt.

to deviate when they see fit as the environment tracks progress
in the background. The prototype is currently being rolled out
at out industrial partner for evaluation in three separate friendly
user groups. We thus expect to extensively report on developer
acceptance, lessons learned, and best practices soon.

VIII. DATA AVAILABILITY

Data used in this paper are subject due to confidentiality
agreements with out industry partner and therefore cannot be
disclosed. The prototype, however, is archived on Figshare. 3

ACKNOWLEDGMENT

The research reported in this paper has been funded by Aus-
trian Science Fund (FWF) under the grant numbers P29415-
NBL and P31989 as well as the Federal Ministry of Transport,
Innovation and Technology, the Austrian Federal Ministry for
Digital and Economic Affairs, and the Provinces of Upper
Austria and Styria in the frame of the COMET Compe-
tence Centers for Excellent Technologies Programme managed
by Austrian Research Promotion Agency FFG (K1-Centres
Pro2Future and SCCH).

REFERENCES

[1] P. Diebold and S. A. Scherr, “Software process models vs descriptions:
What do practitioners use and need?” Journal of Software: Evolution
and Process, vol. 29, no. 11, 2017.

J. Cleland-Huang, M. Vierhauser, and S. Bayley, “Dronology: An
incubator for cyber-physical systems research,” in Proc. of the 40th Int’l
Conf. on Software Engineering: New Ideas and Emerging Results, ser.
ICSE-NIER "18. ACM, 2018, p. 109-112.

C. Mayr-Dorn, M. Vierhauser, S. Bichler, F. Keplinger, J. Cleland-
Huang, A. Egyed, and T. Mehofer, “Supporting quality assurance
with automated process-centric quality constraints checking,” in 43rd
International Conference on Software Engineering (ICSE 2021). 1EEE
/ ACM, 2021, p. to appear.

C. Mayr-Dorn, R. Kretschmer, A. Egyed, R. Heradio, and D. Ferndndez-
Amords, “Inconsistency-tolerating guidance for software engineering
processes,” in 43rd International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER). 1EEE / ACM, 2021,
p. to appear.

C. Fernstrom, “Process weaver: Adding process support to unix,” in
Proc. of the 2nd Int’l Conf. on the Software Process-Continuous Software
Process Improvement. 1EEE, 1993, pp. 12-26.

S. Bandinelli, E. D. Nitto, and A. Fuggetta, “Supporting cooperation in
the SPADE-1 environment,” IEEE Trans. Software Eng., vol. 22, no. 12,
pp. 841-865, 1996.

(2]

14]

L6l

3DOI: 10.6084/m9.figshare.13793513

52

171

18]

[10]

[11]

[12]

[13]

[14]

[15]

L16]

[17]

[18]

[19]
[20]

J. C. Grundy and J. G. Hosking, “Serendipity: Integrated environment
support for process modelling, enactment and work coordination,”
Autom. Softw. Eng., vol. 5, no. 1, pp. 27-60, 1998.

K. Pohl, K. Weidenhaupt, R. Démges, P. Haumer, M. Jarke, and
R. Klamma, “Prime—toward process-integrated modeling environments:
1" ACM Trans. Softw. Eng. Methodol., vol. 8, no. 4, p. 343—410, Oct.
1999.

N. S. Barghouti, “Supporting cooperation in the marvel process-centered
sde,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 5, pp.
21-31, 1992.

C. Montangero and V. Ambriola, “Oikos: constructing process-centred
sdes,” in Software Process Modelling and Technology, 1994, pp. 131—
151.

A. Colantoni, L. Berardinelli, and M. Wimmer, “DevopsML: Towards
modeling devops processes and platforms,” in Proc. of the 23rd Int’l
Conf. on Model Driven Engineering Languages and Systems, ser.
Models’20. ACM, 2020, pp. 1-11.

D. Amalfitano, V. D. Simone, A. R. Fasolino, and S. Scala, “Improving
traceability management through tool integration: an experience in the
automotive domain,” in Proc. of the 2017 Int’l Conf. on Software and
System Process, ICSSP 2017, R. Bendraou, D. Raffo, L. Huang, and
E M. Maggi, Eds. ACM, 2017, pp. 5-14.

R. Hebig, A. Seibel, and H. Giese, “Toward a comparable characteriza-
tion for software development activities in context of MDE,” in Proc.
of the Int’l Conf. on Software and Systems Process, ICSSP, D. Raffo,
D. Pfahl, and L. Zhang, Eds. ACM, 2011, pp. 33-42.

K. A. Kedji, R. Lbath, B. Coulette, M. Nassar, L. Baresse, and
E. Racaru, “Supporting collaborative development using process models:
An integration-focused approach,” in Proc. of the 2012 Int’l Conf. on
Software and System Process, ICSSP 2012, D. R. Jeffery, D. Raffo,
O. Armbrust, and L. Huang, Eds. 1EEE, 2012, pp. 120-129.

X. Zhao, Y. Brun, and L. J. Osterweil, “Supporting process undo and
redo in software engineering decision making,” in Proc. of the Int’l Conf.
on Software and System Process, ICSSP ’13, J. Miinch, J. A. Lan, and
H. Zhang, Eds. ACM, 2013, pp. 56-60.

M. Dumas and D. Pfahl, Modeling Software Processes Using
BPMN: When and When Not? Cham: Springer International
Publishing, 2016, pp. 165-183. [Online|. Available: https://doi.org/10.
1007/978-3-319-31545-4_9

R. Ellner, S. Al-Hilank, J. Drexler, M. Jung, D. Kips, and M. Philippsen,
“espem — a spem extension for enactable behavior modeling,” in Mod-
elling Foundations and Applications, T. Kiihne, B. Selic, M.-P. Gervais,
and F. Terrier, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 116-131.

D. Winkler, L. Kathrein, K. Meixner, P. Staufer, M. Pauditz, and S. Biffl,
“Towards a hybrid process model approach in production systems
engineering,” in Systems, Software and Services Process Improvement,
A. Walker, R. V. O’Connor, and R. Messnarz, Eds. Cham: Springer
International Publishing, 2019, pp. 339-354.

“Drools,” https://www.drools.org, accessed: 2020-08-20.

C. Mayr-Dorn, M. Vierhauser, F. Keplinger, S. Bichler, and A. Egyed,
“Timetracer: a tool for back in time traceability replaying,” in ICSE "20:
42nd International Conference on Software Engineering, Companion
Volume, Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel
and D. Bae, Eds. ACM, 2020, pp. 33-36. |Online|. Available:
https://doi.org/10.1145/3377812.3382141

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:40:00 UTC from IEEE Xplore. Restrictions apply.

